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Microscopic approach for the site distribution and thermodynamic properties
of a single-component polymer subjected to an external field
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A microscopic statistical mechanics approach is proposed for a nonuniform single-component freely jointed
tangential hard-sphere polymer in the framework of density-functional theory. The present approach avoids the
use of single-chain simulation in the theory by treating bonding interaction on the basis of the properties of the
Dirac d function. The present excess free energy includes all terms of functional perturbative expansion around
the uniform bulk fluid in the form of the Verlet-modified bridge function. The second-order direct correlation
function of a uniform polymer melt as the input parameter is obtained by solving numerically the polymer–
reference-interaction-site-model integral equation with the Percus-Yevick closure. Predictions of the present
approach for such microscopic structural and thermodynamics properties as the site density distribution, the
partition coefficient, and the adsorption isotherm near a hard wall or between two hard walls are compared with
computer-simulation results and with those of previous theories. The comparison indicates that the present
approach is more accurate than the previous integral equation theory and the most accurate Monte Carlo
density-functional theories. The predicted oscillations of the medium-induced force between two hard walls
immersed in polymer melts are consistent with the experimental results available in the literature. The relation
of the present approach with self-consistent-field theory, as well as the differences between the two, are
discussed.
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I. INTRODUCTION

It is well known that an oscillatory local-density distribu
tion is generated in a hard sphere fluid adjacent to a s
surface. The formation of the oscillatory local-density dist
bution is due to the so-called packing effect, which modifi
the local environment of near-surface particles by reduc
the number of short-ranged interactions these particles h
with other particles. However, when hard spheres are c
nected to hard sphere chains, another feature comes into
that is imposed by the connectivity of the monomers in
chain. This feature is called the entropic penalty effect
cause the highly repulsive surface reduces the numbe
conformations of the chains near the surface. The comp
tion between these two effects leads to various polymer
terfacial behaviors, such as a modified oscillatory loc
density distribution@1# compared with a hard sphere flu
near a surface, surface depletion@2#, etc. A large number of
technical applications of polymer melts exploits their inte
facial or surface properties to control surface-fluid inter
tions and surface-surface interactions@3#. However, the be-
haviors of polymer melts near a surface have been stu
experimentally much less because most high molec
weight polymers have high viscosities, thus making equi
rium measurements highly difficult. This situation mak
theoretical methods highly necessary.

There are several theoretical methods for the descrip
of a polymer melt near a surface. A scaling methodology w
formulated by DeGennes@4# which is valid for sufficiently
long polymers and provides general properties without a
tailed description of monomers. The Flory mean-field latt
model for uniform polymers was extended to the nonunifo
case by Scheutjens and Fleers@5#. This theory is suitable for
all chain lengths and can be easily adapted to various bo
651X/2001/64~1!/011112~12!/$20.00 64 0111
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ary conditions. However, it cannot provide detailed structu
information due to the noncontinuous lattice model appro
mation employed. The theory of Scheutjens and Fleers
extended to continuous space by Bjorling and Linse@6#. Liq-
uid state methods, such as the integral equation theory
uniform fluids, could also be extended to the nonunifo
case. For example, Yethiraj and Hall@7# used the polymer-
RISM ~reference interaction site model! theory of Curro and
Schweizer@8# coupled with the growing adsorbent model
Hendersonet al. @9# and its extension to slitlike pores b
Zhou and Stell@10# to develop an integral equation theo
for chain molecules in slitlike pores. The density-function
theory constitutes a fourth class of approaches, which are
most popular and suitable theories for nonuniform fluids.
this category, an early version has made use of intuit
phenomenological expressions for the thermodynamics
tential @11# that, when minimized, provided the equilibrium
properties of the studied system. However, these phen
enological approaches often entailed adding to the bulk fr
energy functional ad hoc term contributions that allowed
adsorption or desorption of monomers, thus this version
not completely satisfactory from a theoretical point of vie
Lately, Chandleret al. @12,13# have extended the density
functional theory of nonuniform atomic fluids to nonunifor
polyatomic species, McMullen and Freed@14# have derived a
density-functional formulation from basic statistical mecha
ics relations, and Woodward@15# has derived the so-calle
generalized van der Waals density-functional theory to
nonuniform polymer case. A density-functional theory f
uniform and nonuniform polymers is also developed
Kierlik and Rosinberg@16–18#, which constitutes an exten
sion of Wertheim’s first-order thermodynamic perturbati
theory @19–22# of polymerization in the limit of complete
association. In addition, two Monte Carlo density-function
©2001 The American Physical Society12-1
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theories are proposed by Yethiraj and Woodward@23# and by
Yethiraj @24#. Finally, computer simulations@25,26# pro-
vided the most detailed and exact description of nonunifo
polymer systems. Among the above methods, the den
functional theories@15,18,23,24# are more accurate than th
integral equation theory@7#, which in turn is somewhat more
accurate than the self-consistent-field theory of Bjorling a
Linse @6#. The DFT’s and integral equation theory~IET! can
provide detailed structural descriptions that are beyond
scope of scaling theory and self-consistent-field theory
Scheutjens and Fleers. Among the DFT’s, the Monte Ca
DFT’s combine the undesirable features of both simulat
and theory. While approximate, they still require compu
simulations. However, the DFT’s of Refs.@16–18# are even
more demanding computationally than the Monte Ca
DFT’s, but are rigorous from the theoretical point of vie
The DFT of Ref.@15# is modest computationally when com
pared to those of Refs.@23#, @24#, @16–18#, but still requires
vectorized calculations and furthermore contains an adj
able parameter. The DFT’s of Refs.@12# and @13# also re-
quire single-chain simulations when carried out compu
tionally @27#, and the DFT formulations of Ref.@14# are not
yet carried out numerically. The computer simulations ha
the advantage of being conceptually simple and numeric
exact, but the disadvantage of being demanding comp
tionally, especially for polymers near a surface because
the enhanced local density and the associated reductio
chain mobility. At present, they only serve as standard to
for verifying the theory when experimental data are n
available.

The present paper is based on the idea of the univers
of the free-energy density functional, the aim being to co
struct a numerically modest~without resort to the single
chain simulation! and quantitatively more accurate DFT
Section II contains the formulation of the present DFT an
discussion regarding its numerical solution. In Sec. III, t
predictions of the present DFT are compared with compu
simulation results and those of the previous DFT’s and in
gral equation theory. Finally, Sec. IV contains some concl
ing remarks. A detailed derivation of Eq.~18! is included in
the Appendix.

II. DENSITY FUNCTIONAL THEORY

A. Formulation of the new DFT formalism

We consider a polymer model consisting ofNp freely
jointed tangential hard spheres of diameters, free of any
inherent angular bonding stiffness apart from monomer
pulsion, and with the bonding potentialvp(r ) between suc-
cessive monomers in the chain dependent only on the
tance between the centers of the successive monomers
total bonding potentialVp(R) corresponding to an arbitrar
configuration of a polymer chainR5(r1 ,r2 ,...,rn) is the
sum of all the nearest-neighbor bonding potentials, that

Vp~R!5 (
i 51

Np21

np~ ur i 112r i u!. ~1!
01111
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We consider the tangential hard spheres chain, so the
a fixed bonding lengths. The covalent bonding potential i
represented by

np~r !5k~r 2s!2, ~2!

wherek is the force constant tending to infinity.
In the density-functional theory, all equilibrium propertie

are obtained by requiring that the system grand poten
V@rp(R)# be stationary with respect to changes in the po
mer molecule local-density distributionrp(R), that is@28#,

dV@rp~R!#

drp~R!
50. ~3!

The grand potential functionalV@rp(R)# is related to the
system Helmholtz free-energy functionalF@rp(R)# by the
Legendre transform

V@rp~R!#5F@rp~R!#1E @Fext~R!2m#rp~R!dR, ~4!

wherem is the chemical potential of a polymer molecule a
Fext(R) is the external potential. As in the procedure e
ployed for simple atomic fluids,F@rp(R)# can be expressed
by the sum of an ideal partF id@rp(R)# and an excess par
Fex@rp(R)#,

F@rp~R!#5F id@rp~R!#1Fex@rp~R!#. ~5!

We express the above functional in terms of the polym
molecule local-density distributionrp(R), not the site den-
sity, consequently the ideal free-energy expression of sim
atomic fluids can be extended to the case of polymers,

F id@rp~R!#5kTE rp~R!@ Inrp~R!21#dR

1E rp~R!Vp~R!dR. ~6!

Combining Eqs.~3!–~6! leads to

rp~R!5expH 2bFext~R!2bVp~R!1bm

2b
dFex@rp~R!#

drp~R! J , ~7!

whereb51/kT is the reciprocal temperature,k is the Boltz-
mann constant, andT is the absolute temperature. In th
present paper, we consider only the polymer melts wh
segments are identical, therefore the average site den
r(r ) is related to the polymer molecule local-density dist
bution rp(R) via

r~r !5E (
i 51

Np

d~r2r i !rp~R!dR. ~8!

Consequently,
2-2
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dr~r i !

drp~R!
5

d*( i 51
Np d~r i2r i8!rp~R8!dR8

drp~R!

5E (
i 51

Np

d~r i2r i8!d~R2R8!dR8

5(
i 51

Np E d~r i2r i8!d~R2R8!dR85Np , ~9!

therefore

dFex@rp~R!#

drp~R!
5(

i 51

Np dFex@rp~R!#

dr~r i !
. ~10!

Because the segments of the polymer chains are ident
the external potential that acts on a polymer molecule
given by

Fext~R!5(
i 51

Np

wext~r i !, ~11!

wherewext(r ) is the external potential felt by a segment of
polymer chain whose center is situated atr .

Substituting Eqs.~10! and ~11! into Eq. ~7! leads to

rp~R!5expH 2b(
i 51

Np

wext~r i !2bVp~R!

1bm2b(
i 51

Np dFex@rp~R!#

dr~r i !
J . ~12!

In the absence of an external potential~a uniform system!,
Eq. ~12! acquires the following form:

rp
b5expH bm2b(

i 51

Np S dFex@rr~R!#

dr~r i !
D

r~r !→rb

J , ~13!

whererp
b is the bulk polymer molecule density related to t

bulk segment densityrb by

rp
b5rb/Np . ~14!

One may notice that the termbVp(R) disappears from
Eq. ~13! due to the fact that use of the notationrp

b means
that ur i 112r i u5s for i 51,2,Np21, thus Vp(R)

5( i 51
Np

21
np(ur i 112r i u)5( i 51

Np
21

k(ur i 112r i u2s)250. But it
exists in Eq.~12! because at this time it is not necessar
that ur i 112r i u5s for i 51,2,Np21, however the condition
ur i 112r i u5s for i 51,2,Np21 will be realized in Eq.~28!.

Equations~12! and ~13! lead to
01111
al,
is

rp~R!5rp
b expH 2b(

i 51

Np

wext~r i !2bVp~R!

2b(
i 51

Np dFex@rp~R!#

dr~r i !

1b(
i 51

Np S dFex@rp~R!#

dr~r i !
D

r~r !→rb
J . ~15!

The exact expression ofFex@rp(R)# is not known, but for
Np51,

2b
dFex@rp~R!#

dr~r !
5c~1!

„r ;@r~r !#… ~16!

and

2bS dFex@rp~R!#

dr~r ! D
r~r !→rb

5C0
~1!~rb!, ~17!

whereC(1)
„r ;@r(r )#… andC0

(1)(rb) are the first-order direc
correlation functions for a nonuniform and a uniform atom
fluid, respectively. On the basis of the universality of t
free-energy density functional, we derive in the Append
@29# the following relationship betweenC(1)

„r ;@r(r )#… and
C0

(1)(rb):

C~1!
„r ;@r~r !#…5C0

~1!~rb!1E dr1@r~r1!2rb#C0
~2!

3~ ur2r1u;rb!1BF E dr1@r~r1!2rb#C0
~2!

3~ ur2r1u;rb!G , ~18!

whereC0
(2)(ur2r1u;rb) is the second-order direct correlatio

function of a uniform atomic fluid,B(g) is the bridge func-
tion of a uniform atomic fluid,

g5h2C0
~2! ~19!

is the indirect correlation function, andh is the total correla-
tion function, which is related to the radial distribution fun
tion g via

h5g21. ~20!

Regarding the bridge function, the Percus-Yevick~PY!
@30# bridge function has the form

B@g~r !#5In@11g~r !#2g~r ! ~21!

and the Verlet-modified~VM ! @31# bridge function the form

B@g~r !#52g~r !2/2@114/5g~r !#. ~22!

In Ref. @29#, we combined Eq.~18! with the density pro-
file equation,
2-3
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SHIQI ZHOU AND XIAOQI ZHANG PHYSICAL REVIEW E 64 011112
r~r !5rb exp$2bwext~r !1C~1!~r ;@r#!2C0
~1!~rb!%,

~23!

to predict the density distribution of a nonuniform ha
sphere fluid for several cases. We found that the most a
rate predictions came from the use of the PY analytical
pression forC0

(2)(ur2r1u;rb) and the VM bridge function.
The relationship Eq.~18! is now applied to polymer melts

with C0
(2)(ur2r1u;rb) determined by solving the polyme

reference interaction site model~PRISM! integral equation
for the site-average correlation function@8,32#,

h~r !5E dr 8E dr 9w~ ur2r 8u!C0
~2!

3~ ur 82r 9u;rb!@w~r 9!1rbh~r 9!# ~24!

coupled with the closure equation

g~r !5exp@21/kTf~r !1h~r !2C0
~2!~r ;rb!1B~r !#.

~25!

The PY bridge function Eq.~21! will be used, because th
PRISM theory based on the PY bridge function@33# pro-
vided good predictions for uniform polymer systems at b
high and low densities, while the hypernetted-chain~HNC!
and Martynov-Sarkisov~MS! bridge functions exhibited un
physical features and ultimately failed to converge at l
densities and/or long chains.

The reasons for the above extension are as follows~i!
Equation~18! can be recovered from its extended form~the
PRISM integral equation reduces to the OZ equation w
Np51!. ~ii ! Equation ~18! is the functional expansion o
C(1)

„r ;@r(r )#… aboutC0
(1)(rb), the second term of the right

hand side of Eq.~18! is the main expansion term, and th
third term only includes the residue. The second-order di
correlation functionsC0

(2)(ur2r1u;rb) for uniform polymers
and uniform atomic fluids are all second-order function
derivatives of the excess Helmholtz free energy with resp
tive to the density distributionr(r ) with the limit of uniform
density being taken after taking the functional derivative t
times, so the extended form of Eq.~18! for nonuniform poly-
mers takes into account the main term of the expansion
rectly. ~iii ! The closure equation~25! for the PRISM integral
equation is completely identical to that for the OZ equat
~as can be seen in our recent paper@34#!. Equation~18! ~or
its mixture form! can be derived from Eq.~25! ~or its mix-
ture form! by making use of the reversibility of the deriva
tion in the Appendix, the universality of the free-energy de
sity functional, and the OZ equation~or its mixture form!.
Now if we want to derive the extended form of Eq.~18! from
Eq. ~25!, in order to arrive at the correct second term in t
extended form of Eq.~18!, we have to replaceh2C0

(2) by the
OZ equation, not the PRISM equation, so the argument oB
in the extended form of Eq.~18! should be the same as th
second term in the same equation as Eq.~18!.

However, it should be pointed out that by ‘‘the main e
pansion term’’ we mean that it determines general proper
of the final prediction, for example the basic shape of
density distribution curve, and by ‘‘the residue term’’ w
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mean that it is small in absolute value compared with ‘‘t
main expansion term,’’ so it does not have a great effect
the general shape of the density distribution curve. Bu
includes rich and detailed information on the shape of
density distribution curve~for example, the contact density
the amplitude of the trough, the wave crest, etc.!, so its in-
corporation in the extended form of Eq.~18! will improve on
the accuracy of the prediction greatly~as will be displayed in
the latter part of the paper!. This has been the case for no
uniform hard sphere fluids@29# in which the prediction ac-
curacy is greatly improved on due to the incorporation
‘‘the residue term.’’

Substituting Eqs.~16!–~18! into Eq. ~15! yields

rp~R!5rp
b expH 2b(

i 51

Np

wext~r i !2bVp~R!

1(
i 51

Np E @r~r 8!2rb#C0
~2!C0

~2!~ ur i2r 8u;rb!dr 8

1BF E @r~r 8!2rb#C0
~2!~ ur i2r 8u;rb!dr 8G J .

~26!

From Eqs.~1! and ~2!, one obtains

exp„21/kTVp~R!…5 )
i 51

Np21

kcd~ ur i 112r i u2s!, ~27!

wherekc is a constant whose value will be determined late
by analyzing the case in which the effect of the exter
potential is negligible.

Substituting Eqs.~26! and ~27! into Eq. ~8! leads to

r~r !5E dr1E dr2•••E drNp(i 51

Np

d~r2r i !rp
bF

3@2bwext~r i !,r~r i !# )
j 51,Þ i

Np

F@2bwext~r j !,r~r j !#

3)
k5 i

2

kcd~ ur k212r ku2s! )
k5 i

Np21

kcd~ ur k112r ku2s!

5rp
bF@2bwext~r !,r~r !# (

i 51

Np E dr i 21E dr i 22¯E dr1

3 )
k5 i ,r i[r

2

kcd~ ur k212r ku2s!

3)
k51

i 21

F@2bwext~r k!,r~r k!#

3E dr i 11E dr i 12¯E drNp )
k5 i ,r i[r

Np21

kcd

3~ ur k112r ku2s! )
k5 i 11

Np

F@2bwext~r k!,r~r k!#, ~28!
2-4
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where

F@2bwext~r !,r~r !#5expH 2bwext~r !1E @r~r 8!2rb#C0
~2!

3~ ur2r 8u;rb!dr 81BF E @r~r 8!2rb#

3C0
~2!~ ur2r 8u;rb!dr 8G . ~29!

Equations~28! and ~29!, which can be solved only nu
merically, provide the polymer site density profile under t
site external potentialwext(r ).

B. Numerical solution

To solve Eqs.~28! and ~29!, one must first solve the
PRISM equation~24! coupled with the closure equation~25!
and the PY bridge function equation~21!. Following the
method used for solving the OZ equation, we rewrite
PRISM equation~24! in the Fourier space as

ĥ~k!5ŵ~k!Ĉ0
~2!~k;rb!ŵ~k!1rbŵ~k!Ĉ0

~2!~k;rb!ĥ~k!,
~30!

where carets denote the Fourier transform, which is defin
for example forh(r ), as

ĥ~k!5
4p

k E
0

`

rh~r !sin~kr !dr. ~31!

Equation~30! can be rearranged in the following form su
able for iteration:

ĝ~k!5
Ĉ0

~2!~k;rb!@ŵ2~k!21#1rbŵ~k!Ĉ0
~2!2

~k;rb!

12rbŵ~k!Ĉ0
~2!~k;rb!

.

~32!

The closure equation~25! is rewritten as

C0
~2!~r ;rb!5exp„2bf~r !1g~r !1B~r !…2g~r !21,

~33!

wheref(r ) is the hard sphere pair potential,

f~r !5`, r ,s

50, r.s. ~34!

The basic iterative strategy is as follows: One assum
g(r ), one calculatesC0

(2)(r ;rb) using Eq.~33!, C0
(2)(r ;rb) is

then Fourier transformed to getĈ0
(2)(k;rb), one calculates

ĝ(k) using Eq.~32!, ĝ(k) is Fourier transformed back to ge
g(r ); the above steps are repeated until convergence
accelerate the convergence, one can use the algorithm
Labik et al. @35# to solve the OZ equation, which is an e
tension of Gillan’s algorithm@36#. The approximate single
chain structure factorŵ(k) is first determined from the
Koyama distribution@37# for a semiflexible hard spher
chain with the energy parameter being forced to be z
01111
e

d,

s

o
by

o

~when the energy parameter is zero, the semiflexible h
sphere chain becomes a freely jointed hard sphere chain!.

Equation ~28! can be simplified by making use of th
properties of the Diracd function. After some manipulations
Eq. ~28! becomes

r~r !5rp
bF@2bwext~r !,r~r !#(

i 51

Np

Fi@2bwext~r !,r~r !#

3FNp112 i@2bwext~r !,r~r !#, ~35!

where

Fn@2bwext~r !,r~r !#

5E
0

2p

duE
0

p

df sin~f!F@2bwext~r1I !,

3r~r1I #Fn21@2bwext~r1I !,r~r1I !#.

~36!

I5(sinf cosu,sinf sinu,cosf) is an arbitrary unit vector,
andF1@2bwext(r ),r(r )#51.

Equation~36! can be further simplified for symmetrica
cases, for example when the external potential is spheric
symmetrical, that is,wext(r )5wext(r ). Then,

Fn@2bwext~r !,r~r !#52pE
0

p

df sinfF

3@2bwext~A11r 212r cosf!,

3r~A11r 212r cosf!#Fn21

3@2bwext~A11r 212r cosf!,

3r~A11r 212r coss!#. ~37!

When the external potential is due to one or two para
walls, that is,wext(r )5wext(z), then

Fn@2bwext~z!,r~z!#52pE
0

p

df sinfF

3@2bwext~Az1cosf!,

3r~Az1cosf!#Fn21

3@2bwext~Az1cosf!,

3r~Az1cosf!#. ~38!

Let us now consider the region outside the range of ac
of the external potential, that is, the region where the aver
local site density distribution is constant and equal torb.
Then, F@2bwext(r ),r(r )# becomes equal to 1, and a
Fn@2bwext(r ),r(r )# are equal to kc4p except
F1@2bwext(r ),r(r )#, which is equal to 1. Consequently,
2-5
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SHIQI ZHOU AND XIAOQI ZHANG PHYSICAL REVIEW E 64 011112
rb5rp
b@2kc4p1~Np22!~kc4p!2#, ~39!

thuskc should be equal to 1/4p.
It should be pointed out that one previous paper@38# also

achieved the same simplification of avoiding the use of
single-chain Monte Carlo simulation for two cases, nam
the freely jointed hard sphere chain and the Gaussian ch
In Ref. @38#, the final coupled integral equations are simi
in form to Edwards-Helfand-Tagami ‘‘self-consistent-field
theory, and their ‘‘medium-induced potential’’ is only th
polymer analog of the HNC approximation employed in li
uid state theories of atomic fluids. In the present paper,
same simplification was achieved in the basic DFT fram
work itself. It is not necessary to resort to the concept of fi
theory, so its derivation is enormously simplified compar
with that in Refs.@38# and @39#. Furthermore, the presen
paper goes beyond the simple HNC approximation, and
cludes all expansion terms beyond the second order in
form of a bridge function. By comparing the present Eq.~18!
with Eq. ~24! in Ref. @38#, we find that the medium-induce
potential in Refs.@38# and @39# is actually the deviation of
the excess chemical potential for a nonuniform fluid from
excess chemical potential for the corresponding unifo
fluid. Thus, by the present derivation, we disclose the ph
cal content of the concept of the medium-induced poten
in the self-consistent-field theory and build the bridge b
tween the self-consistent-field theory and density-functio
theory. Also with the concept of a bridge function, we pr
pose a systematic methodology to improve upon the tr
ment of the medium-induced potential in the self-consiste
field theory.

Equation ~28! can be solved iteratively. By selectin
r(r ) and calculating F@2bwext(r ),r(r )# and
Fn@2bwext(r ),r(r )# for n52,3,...,Np using Eqs.~29! and
~36!, respectively, coupled with the numerical solution
C0

(2)(r ;rb), and then calculating a newr(r ) using Eq.~35!,
the above steps are repeated until convergence. To pre
divergence, it is necessary to mix new and oldr(r ) in certain
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proportions. Regarding the choice of bridge function appe
ing in Eq.~18!, we find that as with the case of a nonunifor
hard sphere fluid@29#, the results based on the VM bridg
function are more accurate than those based on the PY br
function for all cases calculated in the present paper. For
reason, the reported data in the present paper are all bas
the VM bridge function.

III. COMPARISON WITH SIMULATIONS
AND OTHER APPROACHES

In the present paper, we consider two cases: in one,
external potential is due to a planar hard wall, and in
other, it is due to two planar hard walls at a separationHs.
In the first case, the local site density distribution is deno
by row(z) and the external potential has the form

fext~z!5`, z,0,

50, z.0. ~40!

In the second case, the local site density distribution
denoted byr(z) and the external potential has the form

fext~z!5`, z,0 or z.Hs,

50, otherwise. ~41!

After the local site density distribution is determined, a
other quantities can be calculated from it. In the present
per, we calculate the adsorption isotherms for hard cha
between two hard walls at separationHs, expressed as the
average site volume fractionhav,

hav5
p

6H E
0

H

r~z!dz, ~42!

as well as the partition coefficientKc defined as
n
a

et
FIG. 1. The normalized density distributio
profile for 4- and 20-mers near a hard wall for
bulk site volume fractionhb50.1. The symbols
represent simulation results@41,42# and the lines
represent the theoretical predictions. The ins
contains the predictions of Ref.@7# and the cor-
responding simulation results.
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MICROSCOPIC APPROACH FOR THE SITE . . . PHYSICAL REVIEW E 64 011112
FIG. 2. The site volume fraction distribution
profile for 3-mers between two hard walls for
separationH510s and an average site volum
fraction hav50.1. The symbols represent th
simulation results@43# and the lines represent th
theoretical predictions.
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Kc5
hav

hb , ~43!

wherehb5(p/6)rb is the bulk site volume fraction.
The pressure acting on the inside faces of the two h

walls is given by@40#

bPinside5r~s/2!, ~44!

while that acting on the outside faces, which is equal to
bulk pressure, is given by

bPbulk5row~s/2!. ~45!

Consequently, the medium-induced force per unit areaf is
the difference

f 5bPinside2bPbulk . ~46!
01111
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e

Let us now compare the predictions of the present the
with the computer-simulation results and those of the pre
ous theories. The cases of 4- and 20-mers near one hard
at the low bulk site volume fractionhb50.1 are presented in
Fig. 1, where the ordinate is the normalized density distri
tion G(z)5row(z)p/6hb. Figure 1 shows that the prese
theory predicts the surface depletion correctly, and that
present agreement with simulation data is better than tha
Ref. @7#. The surface depletion occurs when the bulk dens
is low, because the entropic penalty effect dominates in
case over the packing effect. The density distributions for
case of 3-mers between two hard walls at the average
volume fractions of 0.1, 0.3, and 0.4 are presented in F
2–4, respectively, and those for 20-mers between two h
walls at the average site volume fractions of 0.1 and 0.45
in Figs. 5 and 6, respectively. The Monte Carlo densi
functional theory of Ref.@23# is regarded as the most acc
rate theory for polymers at surfaces in Ref.@24#. Reference
n
FIG. 3. The same as in Fig. 2, but with a
average site volume fractionhav50.3.
2-7



n

he
f.
e

SHIQI ZHOU AND XIAOQI ZHANG PHYSICAL REVIEW E 64 011112
FIG. 4. The same as in Fig. 2, but with a
average site volume fractionhav50.4. In the in-
set, the solid line represents the predictions of t
Monte Carlo density-functional theory of Re
@24#, the dotted line the predictions of the Mont
Carlo density-functional theory of Ref.@23#, and
the symbols the simulation data@43#.
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@24# improved upon the theory of Ref.@23# by treating the
excess part of free energy of nonuniform polymer melts w
a Curtin-Ashcroft-type weighted-density approximation, b
still using the single-chain simulation to treat the correspo
ing ideal part as in Ref.@23#. Because the ideal part is treate
accurately by the single-chain simulation in both theor
@23,24# and the ideal part dominates when the bulk densit
low, the predictions of both theories provide the same ac
racy at low density. At high density, the predictions of R
@24# are more accurate than those of Ref.@23#. To compare
with these theories, the predictions of Refs.@23#, @24# are
displayed in the insets of Figs. 4 and 6. Figures 2–6 sh
that our theory correctly predicts the transition from surfa
depletion at low density to surface enhancement at high d
sity. It is even somewhat more accurate than the theory
Ref. @24#. Both the present theory and that of Ref.@24# are
more accurate than that of Ref.@23# at high densities, and th
01111
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three theories have almost the same accuracy at low de
ties. Figures 7 and 8 present the partition coefficient and
average site volume fraction versus the bulk site volu
fraction and the bulk pressure, respectively, for the case
4- and 8-mers. The predictions of the integral equat
theory of Ref.@7# are displayed in the insets of Figs. 7 and
These two figures show that the present theory and tha
Ref. @7# are in agreement with simulation data. Equation~46!
allows one to calculate the medium-induced force per u
areaf as a function of wall separationH. As an example,f is
plotted againstH in Figs. 9 and 10 for, respectively, 8- an
4-mers polymer melts confined between two hard walls
several bulk site volume fractions. These figures show tha
low bulk site volume fractions, the oscillations are weak a
the force becomes attractive at short separations. As the
site volume fraction increases, the amplitude of the osci
tions increases, the attractive force disappears, being
a
e
e
e

FIG. 5. The site volume fraction distribution
profile for a 20-mer between two hard walls for
separationH510s and an average site volum
fraction hav50.1. The symbols represent th
simulation results@44# and the lines represent th
theoretical predictions.
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FIG. 6. The same as in Fig. 5, but with a
average site volume fractionhav50.45. In the in-
set, the solid line represents the predictions of
Monte Carlo density-functional theory of Re
@24#, the dotted line the predictions of the Mon
Carlo density-functional theory of Ref.@23#, and
the symbols the simulation data@24#.
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placed by a strong repulsiveness at short separations
high bulk site volume fractions. For the same bulk site v
ume fraction, a smaller number of segments induces osc
tions and repulsiveness, but a larger number of segm
inhibits oscillations and induces attractiveness. One can
see that the period of oscillations is approximately one u
diameter. The predicted oscillations at high bulk site volu
fraction are in agreement with the experimental observati
of Israelachvili and co-workers@45,46# made with the sur-
face force apparatus. It is, however, impossible to comp
quantitatively the predictions of the present theory with
experimental data of Israelachvili and co-workers beca
they employed a mixture of polymers.

IV. CONCLUDING REMARKS

In summary, a density-functional theory for nonunifor
polymer melts was proposed, which has the same accu
01111
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-
a-
ts

so
it
e
s

re
e
e

cy

as, or even greater accuracy than, the previous two m
accurate Monte Carlo density-functional theories@23,24# and
more accurate than the integral equation theory@7#. It is
computationally modest due to the fact that the properties
the Diracd function could be used to simplify the treatme
of the connectivity of monomers in the chain, thus avoidi
the use of the single-chain simulation to calculate the id
free-energy contribution. It should be noted that a recent
teresting paper@49# proposed a methodology that permitte
one to take the single-chain Monte Carlo simulation out
the iterative loop and to investigate different cases from
single Monte Carlo simulation. However, the ‘‘medium
induced potential’’ in Refs.@38#, @39#, @49# is of the HNC
approximation type, the present paper relates the medi
induced potential to the deviation of the excess chem
potential for nonuniform fluid from the excess chemical p
tential for the corresponding uniform fluid, and systema
t

t
t
es
on
e

FIG. 7. Variation of the partition coefficien
Kc with the bulk site volume fractionhb for 4-
and 8-mers andH55s. The symbols represen
the simulation results@42# and the lines represen
the theoretical predictions. In the inset, the lin
represent the predictions of the integral equati
theory of Ref.@7# and the symbols represent th
corresponding simulation data@42#.
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SHIQI ZHOU AND XIAOQI ZHANG PHYSICAL REVIEW E 64 011112
FIG. 8. Variation of the average site volum
fraction hav with the bulk pressurebPbulk for 4-
and 8-mers andH55s. The symbols represen
the simulation results@42# and the lines represen
the theoretical predictions. In the inset, the lin
represent the predictions of the integral equati
theory of Ref.@7# and the symbols represent th
corresponding simulation data@42#.
g
e
o

m
r-
tio
x

nd
h-

ity
by
cally improves the medium-induced potential by the brid
function conception. The present theory treats the exc
free-energy contribution by making use of the universality
the free-energy density functional, hence the present for
lation of DFT is completely different from the previous ve
sions of DFT, which treat the excess free-energy contribu
by using various versions of the weighted-density appro
mation @6,15,23,24# or of the perturbative expansion@12–
14#. The extension to mixtures of nonuniform polymers a
to nonuniform polyelectrolytes will be reported in a fort
coming paper.

APPENDIX

To derive Eq. ~18!, it is convenient to expand
C(1)

„r ;@r(r )#… around the uniform system of bulk densityrb

as follows:
01111
e
ss
f
u-

n
i-

C~1!
„r ;@rr #…

5C0
~1!~rb!1E dr1@r~r1!2rb#C0

~2!~ ur2r1u;rb!

1 (
n53

}
1

~n21!! E dr1E dr2¯E drn21

3 )
m51

n21

@r~rm!2rb#C0
~n!~r ,r1 ,... ,rn21 ;rb!, ~A1!

whereC0
(n)(r ,r1 ,... ,rn21 ;rb) is the nth-order direct corre-

lation function ~DCF! of a uniform system of bulk density
rb.

Even in a uniform system, there is a nonuniform dens
profile around each molecule located in the origin given
@47#
FIG. 9. Variation of the medium-induced
force per unit areaf with the wall separationH/s
for 4- and 8-mers andhb50.1.
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FIG. 10. Variation of the medium-induce
force per unit areaf with the wall separationH/s
for 4-mers and various values ofhb.
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r~r !5rbg~r !, ~A2!

where g(r ) is the radial distribution function of the bulk
fluid. Thus, for this special type of inhomogeneity, Eq.~A1!
acquires the following form:

C~1!
„r ;@rbg~r !#…5C0

~1!~rb!1E dr1@rbg~r1!2rb#C0
~2!~ ur

2r1u;rb!1 (
n53

}
rb~n21!

~n21!!

3E dr1E dr2¯E drn21

3 )
m51

n21

h~rm!C0
~n!~r ,r1 ,... ,rn21 ;rb!,

~A3!

whereh(r )5g(r )21 is the total correlation function of the
bulk fluid. The third term in the right-hand side of the abo
equation represents the bridge function@48#, which will be
denoted asB@q(r )#. The bridge function can be expresse
as a functional of a correlation function, such as the rad
distribution functiong(r ), the second-order direct correla
tion function C0

(2)(r ;rb), the cavity correlation function
y(r ), the indirect correlation functiong(r ), or any of these
combinations. Consequently, Eq.~A3! can be rewritten as

C~1!
„r ;@rbg~r !#…5C0

~1!~rb!1E dr1@rbg~r1!2rb#C0
~2!

3~ ur2r1u;rb!1B@q~r !#. ~A4!

Because the functional Fex„r ;@r(r )#… @hence
C(1)

„r ;@r(r )#…52bdFex„r ;@r(r )#…/dr(r ), its functional
derivative with respective tor(r )# is, for a given interaction
01111
l

potential, a universal functional@50# of the density
distributionr(r ) and is independent of the external potent
responsible for the generation of the density distribut
r(r ). Thus, we can specify the functional form o
C(1)

„r ;@r(r )#… by a specific case where the external poten
is the interaction potential between a particle situated
the origin and the bulk particles. One therefore can concl
that C(1)

„r ;@r(r )#… for a general nonuniform system ha
the same form as Eq.~A4!. Let us recall thatr(r ) was
replaced by rbg(r ) for the special inhomogeneity tha
provided Eqs.~A3! and ~A4!. It is clear that for a genera
nonuniform system,g(r ) in Eq. ~A4! should be replaced
by r(r )/rb. Consequently, the following form
for C(1)

„r ;@r(r )#… for a general nonuniform system
obtained:

C~1!
„r ;@r~r !#…5C0

~1!~rb!1E dr1@r~r1!2rb#C0
~2!

3~ ur2r1u;rb!1B@q~r !#. ~A5!

In Ref. @29#, q(r ) was chosen to be the indirect correl
tion function g(r ). However, the Ornstein-Zernike~OZ!
equation

h~r !5C0
~2!~r ;rb!1rbE dr1h~r1!C0

~2!~ ur2r1u;rb!

~A6!

indicates thatg(r ) can be replaced byrb*dr1h(r1)C0
(2)(ur

2r1u;rb). Of course,g(r )5h(r )11 should be replaced in
the above expression byr(r )/rb. Thus one arrives at Eq
~18! in the text.
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