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Microscopic approach for the site distribution and thermodynamic properties
of a single-component polymer subjected to an external field
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A microscopic statistical mechanics approach is proposed for a nonuniform single-component freely jointed
tangential hard-sphere polymer in the framework of density-functional theory. The present approach avoids the
use of single-chain simulation in the theory by treating bonding interaction on the basis of the properties of the
Dirac § function. The present excess free energy includes all terms of functional perturbative expansion around
the uniform bulk fluid in the form of the Verlet-modified bridge function. The second-order direct correlation
function of a uniform polymer melt as the input parameter is obtained by solving numerically the polymer—
reference-interaction-site-model integral equation with the Percus-Yevick closure. Predictions of the present
approach for such microscopic structural and thermodynamics properties as the site density distribution, the
partition coefficient, and the adsorption isotherm near a hard wall or between two hard walls are compared with
computer-simulation results and with those of previous theories. The comparison indicates that the present
approach is more accurate than the previous integral equation theory and the most accurate Monte Carlo
density-functional theories. The predicted oscillations of the medium-induced force between two hard walls
immersed in polymer melts are consistent with the experimental results available in the literature. The relation
of the present approach with self-consistent-field theory, as well as the differences between the two, are
discussed.
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[. INTRODUCTION ary conditions. However, it cannot provide detailed structural
information due to the noncontinuous lattice model approxi-
It is well known that an oscillatory local-density distribu- mation employed. The theory of Scheutjens and Fleers was
tion is generated in a hard sphere fluid adjacent to a soliéxtended to continuous space by Bjorling and Lif&feLig-
surface. The formation of the oscillatory local-density distri- uid state methods, such as the integral equation theory for
bution is due to the so-called packing effect, which modifiesuniform fluids, could also be extended to the nonuniform
the local environment of near-surface particles by reducingase. For example, Yethiraj and HfM] used the polymer-
the number of short-ranged interactions these particles haweISM (reference interaction site modé¢heory of Curro and
with other particles. However, when hard spheres are conSchweizel[8] coupled with the growing adsorbent model of
nected to hard sphere chains, another feature comes into plélendersonet al. [9] and its extension to slitlike pores by
that is imposed by the connectivity of the monomers in theZhou and Stel[10] to develop an integral equation theory
chain. This feature is called the entropic penalty effect befor chain molecules in slitlike pores. The density-functional
cause the highly repulsive surface reduces the number dheory constitutes a fourth class of approaches, which are the
conformations of the chains near the surface. The competimost popular and suitable theories for nonuniform fluids. In
tion between these two effects leads to various polymer inthis category, an early version has made use of intuitive,
terfacial behaviors, such as a modified oscillatory local-phenomenological expressions for the thermodynamics po-
density distribution[1] compared with a hard sphere fluid tential [11] that, when minimized, provided the equilibrium
near a surface, surface depleti@j, etc. A large number of properties of the studied system. However, these phenom-
technical applications of polymer melts exploits their inter-enological approaches often entailed adding to the bulk free-
facial or surface properties to control surface-fluid interac-energy functional ad hoc term contributions that allowed the
tions and surface-surface interactidi®. However, the be- adsorption or desorption of monomers, thus this version is
haviors of polymer melts near a surface have been studiedot completely satisfactory from a theoretical point of view.
experimentally much less because most high moleculatately, Chandleret al. [12,13 have extended the density-
weight polymers have high viscosities, thus making equilib-functional theory of nonuniform atomic fluids to nonuniform
rium measurements highly difficult. This situation makespolyatomic species, McMullen and Frefidt] have derived a
theoretical methods highly necessary. density-functional formulation from basic statistical mechan-
There are several theoretical methods for the descriptioits relations, and Woodward. 5] has derived the so-called
of a polymer melt near a surface. A scaling methodology wagieneralized van der Waals density-functional theory to the
formulated by DeGennggl] which is valid for sufficiently — nonuniform polymer case. A density-functional theory for
long polymers and provides general properties without a dedniform and nonuniform polymers is also developed by
tailed description of monomers. The Flory mean-field latticeKierlik and Rosinberd 16—18, which constitutes an exten-
model for uniform polymers was extended to the nonuniformsion of Wertheim’s first-order thermodynamic perturbation
case by Scheutjens and Flefs$ This theory is suitable for theory[19—-27 of polymerization in the limit of complete
all chain lengths and can be easily adapted to various boundssociation. In addition, two Monte Carlo density-functional
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theories are proposed by Yethiraj and Woodw@®] and by We consider the tangential hard spheres chain, so there is
Yethiraj [24]. Finally, computer simulation$25,26] pro- a fixed bonding lengtle. The covalent bonding potential is
vided the most detailed and exact description of nonuniforniepresented by
polymer systems. Among the above methods, the density-

functional theorie$15,18,23,24 are more accurate than the
integral equation theorly7], which in turn is somewhat more
accurate than the self-consistent-field theory of Bjorling an

Linse[6]. The DFT’s and integral equation thed§eT) can are obtained by requiring that the system grand potential

provide detailed structural descriptions that are beyond th?l[pp(R)] be stationary with respect to changes in the poly-

scope of scaling theory and self-consistent-field theory by, "molecule local-density distributign,(R), that is[28],
Scheutjens and Fleers. Among the DFT’s, the Monte Carlo

DFT’s combine the undesirable features of both simulation Q[ pp(R)]

and theory. While approximate, they still require computer W: . 3
simulations. However, the DFT’s of Refsl6-18 are even P

more demanding computationally than the Monte Carlo The grand potential function&[p,(R)] is related to the
DFT’s, but are rigorous from the theoretical point of view. system Helmholtz free-energy functiong[ p,(R)] by the
The DFT of Ref[15] is modest computationally when com- Legendre transform

pared to those of Ref$23], [24], [16—18, but still requires

vectorized calculations and furthermore contains an adjust- _ _

able parameter. The DFT's of Refdl?] and[13] also re- Q[pp(R)]_F[pp(R)Hf [Pex(R)=11pp(R)AR, (4)
quire single-chain simulations when carried out computa- ) ) )

tionally [27], and the DFT formulations of Ref14] are not whereu is the chemical potent|.al ofa polymer molecule and
yet carried out numerically. The computer simulations havePex(R) is the external potential. As in the procedure em-
the advantage of being conceptually simple and numericallp!oyed for simple atomic fluidsr[ p(R)] can be expressed
exact, but the disadvantage of being demanding computdy the sum of an ideal pafy[ pp(R)] and an excess part
tionally, especially for polymers near a surface because of ed Pp(R) 1,

the enhanced local density and the associated reduction in

chain mobility. At present, they only serve as standard tools Flpp(R)I=Fid pp(R) 1+ Fed pp(R)1. ®)

for yerifying the theory when experimental data are not We express the above functional in terms of the polymer

av?r”r?ger.esent aper is based on the idea of the universality 0 ccule local-density distributiop,(R), not the site den-
P pap . . . . %{ity, consequently the ideal free-energy expression of simple

of the free-energy density functional, the aim being to CON-_tomic fluids can be extended to the case of polymers

struct a numerically modediwithout resort to the single- '

chain simulationh and quantitatively more accurate DFT.

Section Il contains the formulation of the present DFT and a Fid[pp(R)]=ij pp(R)[Inpy(R)—1]dR

discussion regarding its humerical solution. In Sec. lll, the

predictions of the present DFT are compared with computer-

simulation results and those of the previous DFT’s and inte- +f Pp(R)Vp(R)AR. (6)

gral equation theory. Finally, Sec. IV contains some conclud-

ing remarks. A detailed derivation of E(L8) is included in Combining Eqgs(3)—(6) leads to

the Appendix.

vp(N)=k(r—o)?, @

d/vherek is the force constant tending to infinity.
In the density-functional theory, all equilibrium properties

Pp(R) = exp[ —BPex(R)— IBVp(R) +Bur

II. DENSITY FUNCTIONAL THEORY
: _ OF e pp(R) ]
A. Formulation of the new DFT formalism - W] , (7)
We consider a polymer model consisting Nf, freely P

jointed tangential hard spheres of diameterfree of any whereg=1/KT is the reciprocal temperaturkjs the Boltz-
inherent angular bonding stiffness apart from monomer remann constant, and is the absolute temperature. In the
pulsion, and with the bonding potentiaj,(r) between suc- present paper, we consider only the polymer melts whose
cessive monomers in the chain dependent only on the disegments are identical, therefore the average site density
tance between the centers of the successive monomers. Thé&) is related to the polymer molecule local-density distri-
total bonding potential/,(R) corresponding to an arbitrary bution p,(R) via

configuration of a polymer chaiR=(r{,r,,...,r,) is the

sum of all the nearest-neighbor bonding potentials, that is, Np
p(r)=f 2, 8(r=r)py(R)dR, (8)
Np—1 i=1
V.(R)= r.—r:). 1
R '21 Vp(| b @ Consequently,
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dp(r)  SIZP 8(ri—1))pp(R)AR’

Np
pp<R>=pBexp|' —/3;1 Pexd(T))— BVy(R)

5Pp(R) B 5Pp(R)
& R SFelpp(R)]
= s(r;—r1)8(R—R")dR’ - et P
2, Ari=r)aR-R") B2 500
NP
oF (R
= J 8(ri—r{)8(R—R')dR' = 9 +52 Felrp(R)] : (15
i=1 i=1 5p(rl) (r)—pP
therefore The exact expression &%,[ p(R)] is not known, but for
Np=1,
SFelpo(R)] & SFalpp(R)] Felpp(R]
= B = ; 16
iR oy 1O P 5o o el 9
and
Because the segments of the polymer chains are identical,
the external potential that acts on a polymer molecule is SF el pp(R)]
given by - (%) =Cg’(p"), (17)

p(r)—pb

Np whereCAO(r;[ p(r)]) andC{M(p°) are the first-order direct
Pex(R)= Z Pext i) (1) correlation functions for a nonuniform and a uniform atomic
- fluid, respectively. On the basis of the universality of the
free-energy density functional, we derive in the Appendix

where pe,(r) is the external potential felt by a segment of a[29] the following relationship betwee@™)(r;[p(r)]) and
polymer chain whose center is situated at Cgl)(pb):

Substituting Eqs(10) and(11) into Eq.(7) leads to
. CHEIpM D= ") + [ dnlp(ry—p¥ICH)
Pp(R):eXF% _:8;1 (Pexl(ri)_ﬁvp(R)

% SFelpp(R)]
BB

X(|[r=raf;p")+B

[ aritotr -pict

12

X(Jr=r4]:p") |, (18)

In the absence of an external potenf@uniform system  whereC{®)(|r —r4|;p) is the second-order direct correlation

Eq. (12) acquires the following form: function of a uniform atomic fluidB(y) is the bridge func-
tion of a uniform atomic fluid,
oF R
b= exp| Bu- ,82 (—eg[p ot )]) . (13 y=h—-Cg? (19
p(ri) p(r)=pp,

is the indirect correlation function, aridis the total correla-

tion function, which is related to the radial distribution func-
wherep is the bulk polymer molecule density related to the tjon g via

bulk segment density® by
h=g—-1. (20
b_ b
pp=p"/Np. (14) Regarding the bridge function, the Percus-YevigkY)
[30] bridge function has the form
One may notice that the teri8V,(R) disappears from

Eq. (13) due to the fact that use of the notatipj means Bly(r)1=In[1+y(r)]—y(r) (21)
that |ri,,—ri|=0 for |—12Np , thus  V,(R) . , ,

-1 . and the Verlet-modifiedvM) [31] bridge function the form
_El 2 Vp(|r|+1 ril)= 2| 1 k(|r|+1 ri|—o)?=0. But it
exists in Eq.(12) because at this time it is not necessarily B[ y(r)]=— y(r)?/2[ 1+ 4/5y(r)]. (22
that|r; ., —ri|=0 for i=1,2N,—1, however the condition
[risi—r1; |—0' for i=1,2N,—1 will be realized in Eq(28). In Ref.[29], we combined Eq(18) with the density pro-

Equatlons(12) and (13) lead to file equation,
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mean that it is small in absolute value compared with “the
main expansion term,” so it does not have a great effect on
the general shape of the density distribution curve. But it
to predict the density distribution of a nonuniform hard includes rich and detailed information on the shape of the
sphere fluid for several cases. We found that the most accutensity distribution curvéfor example, the contact density,
rate predictions came from the use of the PY analytical exthe amplitude of the trough, the wave crest, etso its in-
pression forC(()z)(|r—r1|;pb) and the VM bridge function.  corporation in the extended form of Ed.8) will improve on
The relationship Eq(18) is now applied to polymer melts the accuracy of the prediction greaths will be displayed in
with C{)(|r—r4|;p°) determined by solving the polymer the latter part of the paperThis has been the case for non-
reference interaction site mod&PRISM) integral equation uniform hard sphere fluidf29] in which the prediction ac-

for the site-average correlation functif®,32], curacy is greatly improved on due to the incorporation of
“the residue term.”

Substituting Eqs(16)—(18) into Eq. (15) yields

p(r)=p®exp{— Beedr)+CH(r;[p]) —C(p®)},
(23)

h(r)=f dr’f dr"w(|r—r'[)C?

Np
X(|r/_r//|;pb)[w(r//)+pbh(r//)] Pp(R):PB eX[{ _le (Pext(ri)_ﬁvp(R)

(29
coupled with the closure equation N,
+2 | [p(r)=p"ICE'CP(|ri—r'[;p")dr’

g(r)=exif —IKT(r) +h(r) —Cg™(rip") + B(r)]. “
(29

The PY bridge function Eq(21) will be used, because the
PRISM theory based on the PY bridge functif88] pro-
vided good predictions for uniform polymer systems at both
high and low densities, while the hypernetted-ch@iNC)
and Martynov-SarkisoyMS) bridge functions exhibited un-
physical features and ultimately failed to converge at low
densities and/or long chains.

The reasons for the above extension are as follGyws

Equation(18) can be recovered from its extended fofthe . . .
PRISM integral equation reduces to the OZ equation wher\NherekC is a constant whose value will be determined lately

N,—1). (ii) Equation(18) is the functional expansion of by anglyz_ing thg_case in which the effect of the external
0y, (D) b . potential is negligible.

CHA(r;[p(r)]) aboutCq(p”), the second term of the right- Substituting Eqs(26) and (27) into Eq. (8) leads to

hand side of Eq(18) is the main expansion term, and the

third term only includes the residue. The second-order direct N,

correlation function<C{?(|r —r4;p®) for uniform polymers p(r):J drlj dr2---J dry >, 8(r—r;)phF

and uniform atomic fluids are all second-order functional Pi=1

derivatives of the excess Helmholtz free energy with respec- Np

tive to the density distributiop(r) with the limit of uniform X[ = Beoxri),p(r)] H

density being taken after taking the functional derivative two j=17i

times, so the extended form of Ed.8) for nonuniform poly- 2 Np—1

mers takes into account the main term of the expansion cor- o o

rectly. (i) The closure equatiot25) for the PRISM integral X;Ei ked(Irk-1=rd = o) |£[. ked(Irea=rid = o)

equation is completely identical to that for the OZ equation

(as can be seen in our recent pafi#4]). Equation(18) (or

its mixture form can be derived from Eq25) (or its mix-

ture form by making use of the reversibility of the deriva-

tion in the Appendix, the universality of the free-energy den-

sity functional, and the OZ equatigr its mixture forn).

Now if we want to derive the extended form of E48) from

Eq. (25), in order to arrive at the correct second term in the

extended form of E¢(18), we have to replace— C{? by the

OZ equation, not the PRISM equation, so the argumer of

+BU [p<r'>—pb1ca2><|ri—r'|;pb>dr'H.
(26)

From Egs.(1) and(2), one obtains
Np—l
exp(—1KTV(R)= 11 kea(lrica=ril=o), (27

FL=Beex(rj),p(rj)]

Np
B BeedDp01 2, [y [ dr o [y

2
x I ked(re1—rd—o)

k=i,rj=r
i—-1

xkljl FI = BoexdT),p(rd)]

in the extended form of Eq18) should be the same as the
second term in the same equation as B&).

However, it should be pointed out that by “the main ex-
pansion term” we mean that it determines general properties
of the final prediction, for example the basic shape of the
density distribution curve, and by “the residue term” we
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where (when the energy parameter is zero, the semiflexible hard
sphere chain becomes a freely jointed hard sphere hain
_ _ _ n N by~(2) EqugUon (28 can be S|mpllf|ed by making use o_f the
FL=Beed).p(r)] eXp{ Boexdr) J[p(r )=p71Cs properties of the Dirad function. After some manipulations,

Eq. (28) becomes
X(Ir—r’l;pb)dr’+BH [p(r')—p"]

Np
p(1)=ppFl=Beexd1),p(N]2, Fil = Beedr).p(r)]
XC@(|r=r'|;p)dr"|. (29) =
XN +1-il = Beex(H).p(1)], (35
Equations(28) and (29), which can be solved only nu- Nt 17! &
merically, provide the polymer site density profile under the
site external potentiabg,(r). where

B. Numerical solution Fol = B@exdr),p(r)]

To solve Egs.(28) and (29), one must first solve the 2m ™ .
PRISM equatior(24) coupled with the closure equati¢@5) = fo dgfo désin(@)F[—Beexdr+1),
and the PY bridge function equatiof21). Following the
method used for solving the OZ equation, we rewrite the Xp(r+11F,_1 = Beexdr +1),p(r+1)].
PRISM equation24) in the Fourier space as (36)
P N A2) L. by b A2 L. D\
(k) =W(k) ™ (ki Pl + AWK Co (ki )h(k)('30) | =(sin ¢ cosh,sin¢gsin 6,cos¢) is an arbitrary unit vector,
andF [ — Beex(r),p(r)]=1.
where carets denote the Fourier transform, which is defined, Equation(36) can be further simplified for symmetrical
for example forh(r), as cases, for example when the external potential is spherically
symmetrical, that iSpe(I) = @ex(r). Then,

“ dar (=
h(k)=Tfo rh(r)sin(kr)dr. (31 _
ol Bead1).p(1)]=27 | "o singF

Equation(30) can be rearranged in the following form suit-

able for iteration: X[ = Booxd m),
2 (k; p")[W2(K) — 1]+ pPi(k) CL (ki p) X p(VL+r7+2r cos) [Fn_s
1- pPW(k) R (K pP) ' X[ = Bex( V1T 17+ 25 cOS),
#2 Xp(V1+r?+2rcoso)].  (37)

y(k)=

The closure equatiof5) is rewritten as

When the external potential is due to one or two parallel
(2)(r+ by = _ — —
Co ' (r;p”)=exp(—=Bo(r)+ y(r)+B(r))—y(r) 1,(33) walls, that is,@ed(r) = ¢ex(2), then

where ¢(r) is the hard sphere pair potential, g .
Fol = Beexd(2),p(2) =2 d¢ singpF
d(r)y=o, <o 0

=0, r>o. (34) X[ = BPex{ VZ+COSe),
The basic iterative strategy is as follows: One assumes Xp(z+cosd)]Fn_y
y(r), one calculate€{(r; p°) u§i?29)] EQ-(b33), CP(r;p" is X[~ B@exi NZ+COSE),
then Fourier transformed to gé&ty™’(k;p®°), one calculates
%(k) using Eq.(32), (k) is Fourier transformed back to get X p(yz+cose)]. (38)

y(r); the above steps are repeated until convergence. To

accelerate the convergence, one can use the algorithm by Let us now consider the region outside the range of action
Labik et al. [35] to solve the OZ equation, which is an ex- of the external potential, that is, the region where the average
tension of Gillan's algorithni36]. The approximate single- local site density distribution is constant and equalpto
chain structure factofv(k) is first determined from the Then, F[ —Beer),p(r)] becomes equal to 1, and all
Koyama distribution[37] for a semiflexible hard sphere F,[—Beer),p(r)] are equal to k4w except
chain with the energy parameter being forced to be zerd [ — Beexlr),p(r)], which is equal to 1. Consequently,
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pb=p3[2kc477+ (Np_z)(kc477)2], (39 _proportions. Regarding the choi_ce of bridge function appear-
ing in Eq.(18), we find that as with the case of a nonuniform
hard sphere fluid29], the results based on the VM bridge
thusk, should be equal to 1/ , function are more accurate than those based on the PY bridge
It should be pointed out that one previous pa8] also  fnction for all cases calculated in the present paper. For this

achieved the same simplification of avoiding the use of theason, the reported data in the present paper are all based on
single-chain Monte Carlo simulation for two cases, namelyiha v bridge function.

the freely jointed hard sphere chain and the Gaussian chain.

In Ref.[38], the final coupled integral equations are similar

in form to Edwards-Helfand-Tagami “self-consistent-field” 1. COMPARISON WITH SIMULATIONS
theory, and their “medium-induced potential” is only the AND OTHER APPROACHES
polymer analog of the HNC approximation employed in lid- | the present paper, we consider two cases: in one, the
uid state theories of atomic fluids. In the present paper, th%xternal potential is dlje to a planar hard wall, and in ’the
same simplification was achieved in the basic DFT frame’other it is due to two planar hard walls at a seﬁaratitm
work itself. It is not necessary to resort to the concept of field X
theory, so its derivation is enormously simplified compare
with that in Refs.[38] and [39]. Furthermore, the present
paper goes beyond the simple HNC approximation, and in- B
cludes all expansion terms beyond the second order in the bex(2) =,
form of a bridge function. By comparing the present E) =0, z>0. (40)
with Eqg. (24) in Ref.[38], we find that the medium-induced
potential in Refs[38] and[39] is actually the deviation of
the excess chemical potential for a nonuniform fluid from thed
excess chemical potential for the corresponding uniform
fluid. Thus, by the present derivation, we disclose the physi-
cal content of the concept of the medium-induced potential
in the self-consistent-field theory and build the bridge be- =0, otherwise. (42)
tween the self-consistent-field theory and density-functional

theory. Also with the concept of a bridge function, we pro-  ager the local site density distribution is determined, all
pose a systematic methodology to improve upon the treaisyar guantities can be calculated from it. In the present pa-
ment of the medium-induced potential in the self—con3|stent—per, we calculate the adsorption isotherms for hard chains

field theqry. . . . between two hard walls at separatibler, expressed as the
Equation (28) can be solved iteratively. By selecting average site volume fraction
av

p(r) and calculating  F[— Beex(r),p(r)] and

Fol = Beex(r),p(r)] for n=2,3,..N, using Egs.(29) and o (H

(36), respectively, coupled with the numerical solution of R p— J p(2)dz, (42)
C(r;p), and then calculating a nep(r) using Eq.(35), 6H Jo

the above steps are repeated until convergence. To prevent

divergence, it is necessary to mix new and p{d) in certain  as well as the partition coefficieit, defined as

In the first case, the local site density distribution is denoted
Y pow(2) and the external potential has the form

z<0,

In the second case, the local site density distribution is
enoted byp(z) and the external potential has the form

bex(2)=, z<0 or z>Ha,

T T

1.10

. 3 . o
c———e
PR PPEYS P I S,
',* - . .

0.00 7R 20-mers i
0.70 1.6 i
= FIG. 1. The normalized density distribution
© 0.50 2 | profile for 4- and 20-mers near a hard wall for a
' ‘ bulk site volume fractiony°=0.1. The symbols
represent simulation resulfg1,42 and the lines
0.30 1 represent the theoretical predictions. The inset
contains the predictions of Ref7] and the cor-
010 - J responding simulation results.
-0.10 - -
0.0
0 1 2 3
-0.30 . : :
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= ./'/ FIG. 2. The site volume fraction distribution
’/ profile for 3-mers between two hard walls for a
/ separationrH= 100 and an average site volume
J fraction 7,,~0.1. The symbols represent the
0.080 - /7 | simulat_ion resul_t:ﬁé_lS] and the lines represent the
L/ theoretical predictions.
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Naw Let us now compare the predictions of the present theory
Kc:_nb_v (43 with the computer-simulation results and those of the previ-
ous theories. The cases of 4- and 20-mers near one hard wall
where 7°= (7/6)p" is the bulk site volume fraction. a'F the low bulk site vqlume'fractiovybzo..l are pres_entt_ed i.n
The pressure acting on the inside faces of the two haréfig- 1, where the ordinate is the normalized density distribu-
walls is given by[40] tion G(z) = pow(z) m/67°. Figure 1 shows that the present
theory predicts the surface depletion correctly, and that the
BPinsige=p(012), (44) present agreement with simulation data is better than that of

Ref.[7]. The surface depletion occurs when the bulk density
while that acting on the outside faces, which is equal to thds low, because the entropic penalty effect dominates in this
bulk pressure, is given by case over the packing effect. The density distributions for the

case of 3-mers between two hard walls at the average site

BPpuk=pow(012). (45) volume fractions of 0.1, 0.3, and 0.4 are presented in Figs.

2—4, respectively, and those for 20-mers between two hard

walls at the average site volume fractions of 0.1 and 0.45 are
in Figs. 5 and 6, respectively. The Monte Carlo density-
functional theory of Ref[23] is regarded as the most accu-

Consequently, the medium-induced force per unit &isa
the difference

f = BPinside— BPhouik- (46)  rate theory for polymers at surfaces in Rg#4]. Reference
0.70 :
\
0.60 .
f
\
s t
= '
050 - -
\.
\.\ FIG. 3. The same as in Fig. 2, but with an
040 L \ | average site volume fraction,,=0.3.
B
\\
\\ S
0.30 N K ;\‘\ e — [ y——
~ ¢ T ¢ Mnhbabit ey
v
0.20 : : :
0.0 1.0 2.0 3.0
2/c
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FIG. 4. The same as in Fig. 2, but with an
average site volume fraction,,~ 0.4. In the in-
set, the solid line represents the predictions of the
Monte Carlo density-functional theory of Ref.
[24], the dotted line the predictions of the Monte
Carlo density-functional theory of Ref23], and

the symbols the simulation daf43].

0.2

[24] improved upon the theory of Reffi23] by treating the  three theories have almost the same accuracy at low densi-
excess part of free energy of nonuniform polymer melts withties. Figures 7 and 8 present the partition coefficient and the
a Curtin-Ashcroft-type weighted-density approximation, butaverage site volume fraction versus the bulk site volume
still using the single-chain simulation to treat the correspondfraction and the bulk pressure, respectively, for the cases of
ing ideal part as in Ref23]. Because the ideal part is treated 4- and 8-mers. The predictions of the integral equation
accurately by the single-chain simulation in both theoriesheory of Ref[7] are displayed in the insets of Figs. 7 and 8.
[23,24] and the ideal part dominates when the bulk density isSThese two figures show that the present theory and that of
low, the predictions of both theories provide the same accuRef.[7] are in agreement with simulation data. Equati46)
racy at low density. At high density, the predictions of Ref.allows one to calculate the medium-induced force per unit
[24] are more accurate than those of R@f3]. To compare areaf as a function of wall separatidd. As an examplef is
with these theories, the predictions of Reff23], [24] are  plotted againsH in Figs. 9 and 10 for, respectively, 8- and
displayed in the insets of Figs. 4 and 6. Figures 2—6 showi-mers polymer melts confined between two hard walls at
that our theory correctly predicts the transition from surfaceseveral bulk site volume fractions. These figures show that at
depletion at low density to surface enhancement at high derdew bulk site volume fractions, the oscillations are weak and
sity. It is even somewhat more accurate than the theory afhe force becomes attractive at short separations. As the bulk
Ref. [24]. Both the present theory and that of RgZ4] are

site volume fraction increases, the amplitude of the oscilla-
more accurate than that of Rg23] at high densities, and the tions increases, the attractive force disappears, being re-

0.12 . \ .
—r T T T T ey -8
_/’/ .
Vd L]
Vil
0.10 p _
) !/
S /
P
0.08 1 / 1 FIG. 5. The site volume fraction distribution
! profile for a 20-mer between two hard walls for a
2 separationrH= 100 and an average site volume
006 L / | fraction 7,,=0.1. The symbols represent the
7/ simulation result$44] and the lines represent the
/ theoretical predictions.
/
4
0.04 7 ]
/
y
0.02 ! : w
0.0 1.0 2.0 3.0 4.0
z/o
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2.0 . , |
2.5
r
)
.l 2.0
~ 15H ]
) *
= )
!
! FIG. 6. The same as in Fig. 5, but with an
’ average site volume fraction,,= 0.45. In the in-
1.0 01 g set, the solid line represents the predictions of the
4 Monte Carlo density-functional theory of Ref.
\ o [24], the dotted line the predictions of the Monte
\ o N PR Carlo density-functional theory of Reff23], and
\ s A o . il 3 the symbols the simulation dafa4].
0.5 ‘A , N e L B
\ 7 T T
. ,/. ~
Sow
0.0 : : ‘
0.0 1.0 2.0 3.0 4.0
2/o

placed by a strong repulsiveness at short separations amld, or even greater accuracy than, the previous two most
high bulk site volume fractions. For the same bulk site vol-accurate Monte Carlo density-functional theofi23,24] and
ume fraction, a smaller number of segments induces oscillanore accurate than the integral equation thelgfy It is
tions and repulsiveness, but a larger number of segmentbmputationally modest due to the fact that the properties of
inhibits oscillations and induces attractiveness. One can als@e Dirac s function could be used to simplify the treatment

see that the period of oscillations is approximately one unipf the connectivity of monomers in the chain, thus avoiding
diameter. The predicted oscillations at high bulk site volumepe se of the single-chain simulation to calculate the ideal

fraction are in agreement with the experimental observationgee_energy contribution. It should be noted that a recent in-
of Israelachvili and co-workerp45,46) made with the sur-

i : ; teresting papef49] proposed a methodology that permitted
face fprc_e apparatus. !t IS, however, impossible to COMParGLe to take the single-chain Monte Carlo simulation out of
quant!tatlvely the predictions of t.he present theory with th he iterative loop and to investigate different cases from a
tehxserelmer;alegzt?ngu:rséaoefla%?v#earlgd co-workers becaus ingle Monte Carlo simulation. However, the “medium-
y employ Poly ’ induced potential” in Refs[38], [39], [49] is of the HNC
approximation type, the present paper relates the medium-
IV. CONCLUDING REMARKS

induced potential to the deviation of the excess chemical
In summary, a density-functional theory for nonuniform potential for nonuniform fluid from the excess chemical po-

polymer melts was proposed, which has the same accuradgntial for the corresponding uniform fluid, and systemati-

1.20 ‘ * -
=T
110 e T Tk 1
4-mers ’.‘/":// /*—6’—\— 8-mers
1.00 b \ P e ]
© )_/' ’/—/ 12 o N o
090 | e Prd , FIG. 7. Variation of the partition coefficient
’ ) /ﬁ/ o K. with the bulk site volume fractiom® for 4-
7 | and 8-mers antH=5¢. The symbols represent
0.80 g the simulation resultf42] and the lines represent
/ the theoretical predictions. In the inset, the lines
070 7 ] represent the predictions of the integral equation
theory of Ref.[7] and the symbols represent the
0.60 - : corresponding simulation daf42].
0.50 0‘5J; 1
00 01 02 03 04 05
0'4%.00 0.10 0.20 0.30 0.40 0.50
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0.50
_/:Z-;ﬂ‘?;_-
040 | Bmers /,_;:K ]
:E \;:;——%%‘_ﬁ_ 4-mers
| /',ﬁ'
\2z” 051 FIG. 8. Variation of the average site volume
030 o ] fraction 7,, with the bulk pressur@Py, for 4-
,',? o4 and 8-mers antH=50. The symbols represent
,/,'/ i the simulation resultf42] and the lines represent
020 L oF 0.3 / Frmers i the theoretical predictions. In the inset, the lines
5 represent the predictions of the integral equation
,‘Q 0.2 / theory of Ref.[7] and the symbols represent the
:,// 7/ corresponding simulation daf42].
0.10 '7',// owo{/ i
d J7,:’/
% voJ‘ |
0 1 2 3
0.00 : ‘ ‘ ; :
0.0 1.0 2.0 3.0 4.0

pru!k

cally improves the medium-induced potential by the bridge o (HV13))

function conception. The present theory treats the excess

free-energy contribution by making use of the universality of _ ~(1), b b ~(2 b
the free-energy density functional, hence the present formu- =Ci’(p HJ dralp(ry) = p?1Ce(Ir—r4l:p")
lation of DFT is completely different from the previous ver- o

sions of DFT, which treat the excess free-energy contribution N 1 fdr fdr f dr

by using various versions of the weighted-density approxi- =5 (n—1)! ) e n-1

mation [6,15,23,24 or of the perturbative expansidi2—

14]. The extension to mixtures of nonuniform polymers and nt
to nonuniform polyelectrolytes will be reported in a forth-
coming paper.

xngl [p(rm)—pPICE(r,F e, .. Fno1:p®), (AD)

whereC{V(r,ry,... Fn_1;p°) is the nth-order direct corre-

APPENDIX lation function(DCF) of a uniform system of bulk density

To derive Eq. (18), it is convenient to expand Even in a uniform system, there is a nonuniform density
CA(r;[p(r)]) around the uniform system of bulk density  profile around each molecule located in the origin given by
as follows: [47]

0.010 T

T

0.000 | ,/° P = DiDimimimimimimie e -

-0.010 - ’ 1

/ FIG. 9. Variation of the medium-induced
! force per unit are&with the wall separatioi/o
-0.020 ! 4 for 4- and 8-mers and,°=0.1.

-0.030  / -

~-0.040 : .
1.0 2.0 3.0 4.0

Hlo
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0.40

i
0.30 1=0.3 ]
7
- | 1=0.25
‘. n=0.2
020 H ]
1=0.15
FIG. 10. Variation of the medium-induced
n=0.1 force per unit aredwith the wall separatioi/o
0.10 - for 4-mers and various values of.
000 L=< s = imimemem~ P - i
-0.10 l : :
1.0 2.0 3.0 4.0 5.0
H/c
p(r)=p°g(r), (A2) potential, a universal functional50] of the density

where g(r) is the radial distribution function of the bulk
fluid. Thus, for this special type of inhomogeneity, E41)
acquires the following form:

CH(ri[pPg(r =CE"(p) + f dra[p°g(rs) —p"1C6(Ir

p(h—1)
p

(n—1)!

Xf drlf drz"'f drn_l

n—-1
X IT hra)CE(rre,.. Fao1ip®),
m=1

—r4|;p°) + >
n=3

(A3)

whereh(r)=g(r)—1 is the total correlation function of the

bulk fluid. The third term in the right-hand side of the above

equation represents the bridge functiet8], which will be

denoted a®3[ 9(r)]. The bridge function can be expressed
as a functional of a correlation function, such as the radial
distribution functiong(r), the second-order direct correla-

tion function C{?)(r;p"), the cavity correlation function
y(r), the indirect correlation functiory(r), or any of these
combinations. Consequently, E@3) can be rewritten as

CO(r;[pPg(n])=CM(p®) + f dry[p°g(ry)—pPICH

X ([r=rq|;p) +B[9(r)]. (A4)

Because the functional Fq(r;[p(r)]) [hence
CO(r:[p(r)])=— BSF o (r:[p(r) 1)/ 8p(r), its functional
derivative with respective tp(r)] is, for a given interaction

distributionp(r) and is independent of the external potential
responsible for the generation of the density distribution
p(r). Thus, we can specify the functional form of
CW(r:[p(r)]) by a specific case where the external potential
is the interaction potential between a particle situated in
the origin and the bulk particles. One therefore can conclude
that C(r;[p(r)]) for a general nonuniform system has
the same form as EqA4). Let us recall thatp(r) was
replaced by pPg(r) for the special inhomogeneity that
provided Egs.(A3) and (A4). It is clear that for a general
nonuniform systemg(r) in Eq. (A4) should be replaced
by p(r)/p®. Consequently, the following form
for CO(r:[p(r)]) for a general nonuniform system is
obtained:

CH o) =)+ [ analp(ry)—p*ICE!

X (|r=rq];p°)+B[O(r)]. (A5)

In Ref.[29], 9(r) was chosen to be the indirect correla-
tion function y(r). However, the Ornstein-Zernik€OZ)
equation

h<r>:céf>(r;pb>+pbf dr;h(r)CE(|r—raf;p°
(A6)

indicates thaty(r) can be replaced by dr h(r;)C{(|r
—r4];p"). Of course,g(r)=h(r)+1 should be replaced in
the above expression by(r)/p®. Thus one arrives at Eq.
(18) in the text.
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